Levitated Quantum Nanophotonics

Vijay Jain^a, Martin Frimmer^a, Erik Hebestreit^a, Jan Gieseler^a, Romain Quidant^b, Christoph Dellago^c, and Lukas Novotny^a

- a) ETH Zurich, Photonics Laboratory, 8093 Zurich, Switzerland.
- b) ICFO, Mediterranean Technology Park, 08860 Castelldefels, Spain.
 - c) University of Vienna, Faculty of Physics, 1090 Vienna, Austria.

I discuss our experiments with optically levitated nanoparticles in ultrahigh vacuum. Using active parametric feedback we cool the particle's center-of-mass temperature to $T \sim 100 \mu \text{K}$ and reach mean quantum occupation numbers of $n \sim 15$. I show that mechanical quality factors of $Q = 10^9$ can be reached and that damping is dominated by photon recoil heating. The vacuum-trapped nanoparticle forms an ideal model system for studying non-equilibrium processes, nonlinear interactions, and ultrasmall forces.

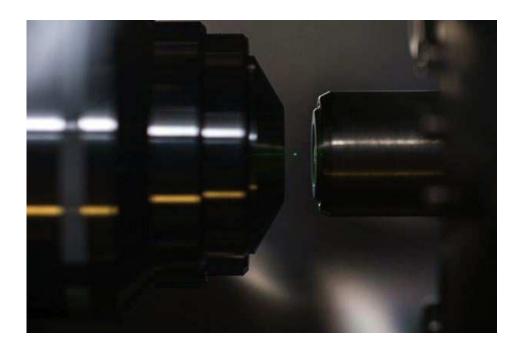


Figure 1: Photograph of light scattered from a laser-trapped diamond nanoparticle.