POLARITON CONDENSATES IN LATTICES

Jacqueline Bloch

Laboratoire de Photonique et de Nanostructures, LPN/CNRS Route de Nozay, 91460 Marcoussis, France Jacqueline.bloch@lpn.cnrs.fr

At the frontier between non-linear optics and the physics of Bose Einstein condensation, semiconductor microcavities opened a new research field, both for fundamental studies of bosonic quantum fluids in a driven dissipative system, and for the development of new devices for all optical information processing.

Optical properties of semiconductor microcavities are governed by bosonic quasiparticles named cavity polaritons, which are light-matter mixed states. Cavity polaritons propagate like photons, but interact strongly with their environment via their matter component.

In this talk, I will review how semiconductor microcavities can be engineered into 1D and 2D lattices allowing implementing complex hamiltonians and progressing toward quantum simulation. I will show how we could generate polaritons in a 1D quasi-periodic Fibonacci potential and reveal features characteristic for a fractal energy spectrum. Then I will present a 2D honeycomb lattice for polaritons, which allows direct imaging of Dirac cones and opens the way to the investigation of the hydrodynamics of Dirac polaritons. Finally 1D lattices sustaining a non-dispersive band or "flat band" will be presented: condensation in localized plaquette states is evidenced with very short extension of the spatial coherence.

All these examples highlight the great potential of semiconductor cavities as a new platform to investigate the physics of interacting bosons.

References

- [1] Spontaneous formation and optical manipulation of extended polariton condensates, E. Wertz, et al., Nat. Phys. 6, 860 (2010)
- [2] Fractal energy spectrum of a polariton gas in a Fibonacci quasi-periodic potential, D. Tanese et al., Phys. Rev. Lett. 112, 146404 (2014)
- [3] "Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons", T. Jacqmin et al., Phys. Rev. Lett. **112**, 116402 (2014)
- [4] "Polariton condensation in the flat band of a 1D comb lattice", F. Baboux et al., under preparation