The application of atom lasers to precision measurement

D. Döring, P.A. Altin, G. McDonald, J.E. Debs, N.P. Robins and J.D. Close

Department of Quantum Science

Research School of Physics and Engineering The Australian National University, Canberra, Australia

e-mail: nick.robins@anu.edu.au

Abstract

Atom interferometry with laser cooled atoms has been shown to be a competitive platform for inertial sensors and as a testbed for fundamental measurements. Using laser cooled atoms offers two advantages over hot thermal beams: a smaller velocity width, and hence higher beam-splitting efficiency, and a more compact apparatus for the same enclosed area. In this seminar we will look at using BEC and atom lasers as a source for matter wave interferometry. We will first give an overview of our research into atom laser output couplers [[1]], and discuss our work on pumping [[2]]. With an M^2 value of 1.4 and an instantaneous flux of 10^7 atoms/s in a pure $m_F = 0$ beam, a freely falling atom laser looks to be a good candidate for atom interferometry. In addition to having a narrower velocity width than a laser cooled source, atom lasers offer the possibility of quadrature squeezing as a path to improved signal to noise in a measurement. We will discuss two prototype 'clock state' systems running in our labs. A free space interferometer operating at the projection noise limit with 10⁴ atoms [[3]] and a trapped atom system currently limited to a factor of 2.5 off the projection noise limit with 10⁶ condensate atoms. I will discuss the technical and fundamental noise sources that limit our current systems, and outline our solutions to these problems.

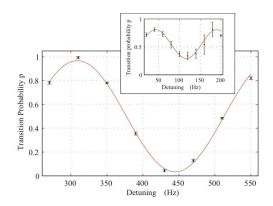


Figure 1: Noise measurement on a Ramsey fringe. The graph illustrates a significant improvement in signal-to-noise as compared to the data in our previous work, Opt. Express 17, 20661 (2009) (see inset).

References

- J. E. Debs, D. Dring, P. A. Altin, C. Figl, J. Dugu, M. Jeppesen, J. T. Schultz, N. P. Robins, and J. D. Close, Experimental comparison of Raman and rf outcouplers for highflux atom lasers, Phys. Rev. A 81, 013618 (2010).
- [2] N. P. Robins, C. Figl, M. Jeppesen, G. R. Dennis, J. D. Close, A pumped atom laser, Nature Physics 4, 731 - 736 (2008).
- [3] arXiv:1002.3624 D. Döring, G. McDonald, J.E. Debs, C. Figl, P.A. Altin, H.-A. Bachor, N.P. Robins, J.D. Close, Quantum projection noise limited interferometry with coherent atoms in a Ramsey type setup (2010).