Molecular Dynamics and Structure in Interferometry

S. Eibenberger¹, S. Gerlich¹, M. Gring¹, S. Nimmrichter¹, T. Berrada¹, M. Arndt¹, H. Ulbricht², K. Hornberger³, M. Müri⁴, J. Tüxen⁴, M. Mayor⁴, M. Böckmann⁵, and N. L. Doltsinis⁵

¹Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria

²School of Physics and Astronomy, University of Southampton, Highfield Southampton SO17 1BJ, United Kingdom

³MPI for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden

⁴University of Basel, Department of Chemistry, St. Johannsring 19, CH-4056 Basel

⁵Department of Physics, King's College London, London WC2R 2LS, UK

e-mail: sandra.eibenberger@univie.ac.at

Abstract

Kapitza-Dirac-Talbot-Lau interferometry (KDTLI) has been successfully established as a well-adapted tool for studying the wave nature of massive and complex molecules [3].

De Broglie coherence is to first order only associated with the center-of-mass motion. In the presence of external perturbations, quantum metrology however also becomes highly sensitive to internal molecular properties, such as electric susceptibilities or dipole moments, which may affect the interference contrast or phase shift without introducing genuine decoherence. Molecular structure or internal dynamics determine the electric properties and become accessible through KDTLI.

We present recent experimental data from interference experiments showing the influence of molecular dynamics on de Broglie coherence [1].

In addition, high-contrast interference measurements now show for the first time the possibility to distinguish two structural isomers, i.e. two sorts of perlfuoralkyl-functionalized molecules with the same mass (1592 amu) and the same chemical sum formula, in molecule interferometry [2].

Keywords: MATTER WAVE INTERFEROMETRY, METROLOGY, MOLECULAR PHYSICS

References

[1] M. Gring, S. Gerlich, S. Eibenberger, S. Nimmrichter, T. Berrada, M. Arndt, H. Ul-

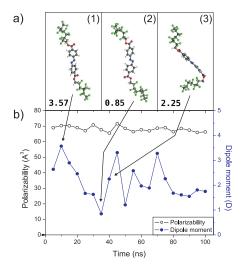


Figure 1: a) Snap shots of the simulation of perfluoroalkylated azobenzenes at 10 ns (1), 35 ns (2), and 40 ns (3). b) Static scalar polarizability, α_{stat} and electric dipole moment d along the MDS trajectory.

bricht, K. Hornberger, M. Müri, M. Mayor, M. Böckmann, and N.L. Doltsinis, Phys. Rev. A 81, 031604 (2010).

- [2] J. Tüxen, S. Gerlich, S. Eibenberger, M. Arndt, and M. Mayor, submitted (2010).
- [3] S. Gerlich, M. Gring, H. Ulbricht, K. Hornberger, J. Tüxen, M. Mayor and M. Arndt, Ang. Chem. Int. Ed. 47, 33, 6195-6198 (2008).